Đề cương ôn Tập Hình học lớp 8
Ôn tập Hình học lớp 8 là tài liệu được VnDoc tổng hợp các bài tập Toán lớp 8 đi từ cơ bản đến nâng cao, giúp các bạn học sinh nắm chắc kiến thức, tự củng cố và hệ thống chương trình học lớp 8 được chắc chắn, làm nền tảng tốt khi học lên chương trình lớp 9. Mời các em học sinh, thầy cô và phụ huynh tham khảo.
- Đề cương ôn tập hè môn Toán lớp 8
- Tuyển tập 40 bài tập Hóa học nâng cao lớp 8
- 50 đề ôn tập Toán lớp 8 cơ bản
Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 8, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 8 sau: Nhóm Tài liệu học tập lớp 8. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.
I. Tổng hợp 1:
Bài 1: Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 2: Cho hình thang ABCD (AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.
Bài 3: Cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Trung điểm của DH là I. Nối AI. Kẻ đường thẳng vuông góc với AI tại I cắt cạnh BC ở K. Chứng minh K là trung điểm cạnh BC.
Bài 4: Cho hình bình hành ABCD, hai đường chéo cắt nhau ở O. Hai đường thẳng d1 và d2 cùng đi qua O và vuông góc với nhau. Đường thẳng d1 cắt các cạnh AB và CD ở M và P. Đường thẳng d2 cắt các cạnh BC và AD ở N và Q.
a/ Chứng minh tứ giác MNPQ là hình thoi.
b/ Nếu ABCD là hình vuông thì tứ giác MNPQ là hình gì? Chứng minh.
Bài 5: Cho tứ giác ABCD có AD = BC và AB < CD. Trung điểm của các cạnh AB và CD là M và N. Trung điểm của các đường chéo BD và AC là P và Q.
a/ Chứng minh tứ giác MNPQ là hình thoi.
b/ Hai cạnh DA và CB kéo dài cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng minh Gx // MN
AI. Diện tích hình chữ nhật - hình vuông - hình tam giác:
Bài 1: Cho hình chữ nhật ABCD có AB = 5cm, BC = 4cm. Trên cạnh AD dựng tam giác ADE sao cho AE và DE cắt cạnh BC lần lượt tại M và N và M là trung điểm của đoạn thẳng AE. Tính diện tích tam giác ADE.
Bài 2:
1/ Tính diện tích hình chữ nhật biết rằng trong hình chữ nhật có một điểm M cách đều ba cạnh và giao điểm của hai đường chéo và khoảng cách đó là 4cm.
2/ Tính diện tích hình thang vuông có đáy nhỏ bằng chiều cao bằng 6cm và góc lớn nhất bằng 1350.
Bài 3:
1/ Chứng minh rằng diện tích của hình vuông dựng trên cạnh góc vuông của tam giác vuông cân bằng hai lần diện tích của hình vuông dựng trên đường cao thuộc cạnh huyền.
2/ Chứng minh rằng diện tích của hình vuông có cạnh là đường chéo của hình chữ nhật thì lớn hơn hoặc bằng hai lần diện tích của hình chữ nhật.
Bài 4: Cho hai hình vuông có cạnh a và chung nhau một đỉnh, cạnh của một hình nằm trên đường chéo của hình vuông kia. Tính diện tích phần chung của hai hình vuông.
III. Diện tích tam giác:
Bài 1:
1/ Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Trên DC lấy điểm M sao cho MC = 2cm, điểm N thuộc cạnh AB. Tính diện tích tam giác CMN.
2/ Cho hình chữ nhật ABCD và điểm M thuộc cạnh AB. Tìm tỉ số SMCD / SABCD
Bài 2: Cho tam giác ABC. Các đường trung tuyến BE và CF cắt nhau tại G. So sánh diện tích tam giác GEC và tam giác ABC.
Bài 3: Cho hình thang ABCD, BC//AD. Các đường chéo cắt nhau tại O. Chứng minh rằng SOAB = SOCD và từ đó suy ra OA.OB = OC.OD.
Bài 4:
a/ Chứng minh rằng các đường trung tuyến của tam giác chia tam giác thành 6 phần có diện tích bằng nhau.
b/ Gọi G là trọng tâm của tam giác ABC thì SGAB = SGAC = SGBC.
Bài 5: Cho tam giác vuông ABC vuông tại A. Trên cạnh AB, AC, BC và ở phía ngoài của tam giác dựng các hình vuông ABED, ACPQ và BCMN. Đường cao AH thuộc cạnh huyền của tam giác vuông ABC cắt MN tại F. Chứng minh:
a/ SBHFN = SABED, từ đó suy ra
b/ SHCMF = SACPQ, từ đó suy ra
IV. Diện tích hình thang - Hình bình hành - Hình thoi
Bài 1:
1/ Cho hình chữ nhật ABCD có AB = 48cm, BC = 24cm, điểm E là trung điểm của DC. Tìm điểm F trên AB sao cho diện tích tứ giác FBCE bằng diện tích 1/3 hình chữ nhật ABCD.
2/ Đường chéo của hình thoi bằng 18 cm; 24cm. Tính chu vi hình thoi và khoảng cách giữa các cạnh song song.
Bài 2: Diện tích của một hình thoi là 540. Một trong những đường chéo của nó bằng 4,5dm. Tính khoảng cách giao điểm của các đường chéo đến các cạnh.
Bài 3:
a/ Tính diện tích hình thang cân có đường cao h và các đường chéo vuông góc với nhau.
b/ Hai đường chéo của hình thang cân vuông góc với nhau còn tổng hai cạnh đáy bằng 2a. Tính diện tích của hình thang.
Bài 4: Cho hình bình hành ABCD, trên tia đối của tia BA lấy điểm E, trên tia đối của tia DA lấy điểm K. Đường thẳng ED cắt KB tại O. Chứng minh rằng diện tích tứ giác ABOD và CEOK bằng nhau.
V. Tổng hợp 2:
Bài 1: Cho hình chữ nhật ABCD, có cạnh AB = 4cm, BC = 3cm. Kẻ các tia phân giác của các góc trong, chúng cắt nhau ở M, N, P, Q.
a. Chứng minh tam giác MNPQ là hình vuông
b. Tính diện tích hình vuông MNPQ
Bài 2: Cho tam giác ABC đều
a. Chứng minh ba đường cao của tam giác đó bằng nhau.
b. Chứng minh rằng tổng các khoảng cách từ điểm D bất kì thuộc miền trong của tam giác đều đó đến các cạnh của tam giác không phụ thuộc vào vị trí D.
Bài 3: Cho tam giác ABC cân tại A, đường cao AH, O là trung điểm của AH. Tia BO cắt AC tại D, tia CO cắt AB tại E. Tính tỉ số diện tích tứ giác ADOE và diện tích tam giác ABC.
Bài 4: Cho hình bình hành ABCD. Từ B kẻ đường thẳng cắt cạnh CD tại M (M nằm giữa C và D). Từ D kẻ đường thẳng cắt cạnh CB tại điểm N (N nằm giữa B và C). BM cắt DN tại điểm I. Biết MB = ND
a. Chứng minh diện tích tam giác ABM bằng diện tích tam giác AND.
b. Chứng minh IA là phân giác của góc BID
(Còn tiếp)
Mời bạn đọc tải tài liệu để tham khảo đầy đủ bài học!
---------------------------------------------------------------
Như vậy, VnDoc.com đã gửi tới các bạn Bài tập tổng hợp hình học lớp 8. Ngoài ra, các em học sinh có thể tham khảo thêm các tài liệu khác do VnDoc sưu tầm và chọn lọc như Giải Toán 8, Giải Bài tập Toán 8, Chuyên đề Toán 8, để học tốt môn Toán hơn và chuẩn bị cho các bài thi đạt kết quả cao.