List comprehension pandas if-else Chi tiết

List comprehension pandas if-else Chi tiết

Mẹo Hướng dẫn List comprehension pandas if-else Mới Nhất


Pro đang tìm kiếm từ khóa List comprehension pandas if-else được Update vào lúc : 2022-12-15 08:45:13 . Với phương châm chia sẻ Bí kíp về trong nội dung bài viết một cách Chi Tiết Mới Nhất. Nếu sau khi tìm hiểu thêm tài liệu vẫn ko hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Ad lý giải và hướng dẫn lại nha.


When to Use a List Comprehension in Python


When to Use a List Comprehension in Python


by James Timmins basics pythonMark as Completed Tweet Share E-Mail


Table of Contents


Nội dung chính


  • When to Use a List Comprehension in Python

  • How to Create Lists in Python

  • Using for Loops

  • Using map() Objects

  • Using List Comprehensions

  • Benefits of Using List Comprehensions

  • How to Supercharge Your Comprehensions

  • Using Conditional Logic

  • Using Set and Dictionary Comprehensions

  • Using the Walrus Operator

  • When Not to Use a List Comprehension in Python

  • Watch Out for Nested Comprehensions

  • Choose Generators for Large Datasets

  • Profile to Optimize Performance

  • Keep reading RealPython by creating a không lấy phí account or signingin:


  • Remove ads


    Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Understanding Python List Comprehensions


    Python is famous for allowing you to write code thats elegant, easy to write, and almost as easy to read as plain English. One of the languages most distinctive features is the list comprehension, which you can use to create powerful functionality within a single line of code. However, many developers struggle to fully leverage the more advanced features of a list comprehension in Python. Some programmers even use them too much, which can lead to code thats less efficient and harder to read.


    By the end of this tutorial, youll understand the full power of Python list comprehensions and how to use their features comfortably. Youll also gain an understanding of the trade-offs that come with using them so that you can determine when other approaches are more preferable.


    In this tutorial, youll learn how to:


    • Rewrite loops and map() calls as a list comprehension in Python

    • Choose between comprehensions, loops, and map() calls

    • Supercharge your comprehensions with conditional logic

    • Use comprehensions to replace filter()

    • Profile your code to solve performance questions

    Free Bonus: Click here to get access to a chapter from Python Tricks: The Book that shows you Pythons best practices with simple examples you can apply instantly to write more beautiful + Pythonic code.


    How to Create Lists in Python


    There are a few different ways you can create lists in Python. To better understand the trade-offs of using a list comprehension in Python, lets first see how to create lists with these approaches.


    Remove ads


    Using for Loops


    The most common type of loop is the for loop. You can use a for loop to create a list of elements in three steps:


  • Instantiate an empty list.

  • Loop over an iterable or range of elements.

  • Append each element to the end of the list.

  • If you want to create a list containing the first ten perfect squares, then you can complete these steps in three lines of code:


    >>>>>> squares = []

    >>> for i in range(10):

    … squares.append(i * i)

    >>> squares

    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


    Here, you instantiate an empty list, squares. Then, you use a for loop to iterate over range(10). Finally, you multiply each number by itself and append the result to the end of the list.


    Using map() Objects


    map() provides an alternative approach thats based in functional programming. You pass in a function and an iterable, and map() will create an object. This object contains the output you would get from running each iterable element through the supplied function.


    As an example, consider a situation in which you need to calculate the price after tax for a list of transactions:


    >>>>>> txns = [1.09, 23.56, 57.84, 4.56, 6.78]

    >>> TAX_RATE = .08

    >>> def get_price_with_tax(txn):

    … return txn * (1 + TAX_RATE)

    >>> final_prices = map(get_price_with_tax, txns)

    >>> list(final_prices)

    [1.1772000000000002, 25.4448, 62.467200000000005, 4.9248, 7.322400000000001]


    Here, you have an iterable txns and a function get_price_with_tax(). You pass both of these arguments to map(), and store the resulting object in final_prices. You can easily convert this map object into a list using list().


    Using List Comprehensions


    List comprehensions are a third way of making lists. With this elegant approach, you could rewrite the for loop from the first example in just a single line of code:


    >>>>>> squares = [i * i for i in range(10)]

    >>> squares

    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


    Rather than creating an empty list and adding each element to the end, you simply define the list and its contents the same time by following this format:


    >>>new_list = [expression for member in iterable]


    Every list comprehension in Python includes three elements:


  • expression is the thành viên itself, a call to a method, or any other valid expression that returns a value. In the example above, the expression i * i is the square of the thành viên value.

  • thành viên is the object or value in the list or iterable. In the example above, the thành viên value is i.

  • iterable is a list, set, sequence, generator, or any other object that can return its elements one a time. In the example above, the iterable is range(10).

  • Because the expression requirement is so flexible, a list comprehension in Python works well in many places where you would use map(). You can rewrite the pricing example with its own list comprehension:


    >>>>>> txns = [1.09, 23.56, 57.84, 4.56, 6.78]

    >>> TAX_RATE = .08

    >>> def get_price_with_tax(txn):

    … return txn * (1 + TAX_RATE)

    >>> final_prices = [get_price_with_tax(i) for i in txns]

    >>> final_prices

    [1.1772000000000002, 25.4448, 62.467200000000005, 4.9248, 7.322400000000001]


    The only distinction between this implementation and map() is that the list comprehension in Python returns a list, not a map object.


    Remove ads


    Benefits of Using List Comprehensions


    List comprehensions are often described as being more Pythonic than loops or map(). But rather than blindly accepting that assessment, its worth it to understand the benefits of using a list comprehension in Python when compared to the alternatives. Later on, youll learn about a few scenarios where the alternatives are a better choice.


    One main benefit of using a list comprehension in Python is that its a single tool that you can use in many different situations. In addition to standard list creation, list comprehensions can also be used for mapping and filtering. You dont have to use a different approach for each scenario.


    This is the main reason why list comprehensions are considered Pythonic, as Python embraces simple, powerful tools that you can use in a wide variety of situations. As an added side benefit, whenever you use a list comprehension in Python, you wont need to remember the proper order of arguments like you would when you call map().


    List comprehensions are also more declarative than loops, which means theyre easier to read and understand. Loops require you to focus on how the list is created. You have to manually create an empty list, loop over the elements, and add each of them to the end of the list. With a list comprehension in Python, you can instead focus on what you want to go in the list and trust that Python will take care of how the list construction takes place.


    How to Supercharge Your Comprehensions


    In order to understand the full value that list comprehensions can provide, its helpful to understand their range of possible functionality. Youll also want to understand the changes that are coming to the list comprehension in Python 3.8.


    Using Conditional Logic


    Earlier, you saw this formula for how to create list comprehensions:


    >>>new_list = [expression for member in iterable]


    While this formula is accurate, its also a bit incomplete. A more complete description of the comprehension formula adds tư vấn for optional conditionals. The most common way to add conditional logic to a list comprehension is to add a conditional to the end of the expression:


    >>>new_list = [expression for member in iterable (if conditional)]


    Here, your conditional statement comes just before the closing bracket.


    Conditionals are important because they allow list comprehensions to filter out unwanted values, which would normally require a call to filter():


    >>>>>> sentence = ‘the rocket came back from mars’

    >>> vowels = [i for i in sentence if i in ‘aeiou’]

    >>> vowels

    [‘e’, ‘o’, ‘e’, ‘a’, ‘e’, ‘a’, ‘o’, ‘a’]


    In this code block, the conditional statement filters out any characters in sentence that arent a vowel.


    The conditional can test any valid expression. If you need a more complex filter, then you can even move the conditional logic to a separate function:


    >>>>>> sentence = ‘The rocket, who was named Ted, came back

    … from Mars because he missed his friends.’

    >>> def is_consonant(letter):

    … vowels = ‘aeiou’

    … return letter.isalpha() and letter.lower() not in vowels

    >>> consonants = [i for i in sentence if is_consonant(i)]

    [‘T’, ‘h’, ‘r’, ‘c’, ‘k’, ‘t’, ‘w’, ‘h’, ‘w’, ‘s’, ‘n’, ‘m’, ‘d’,

    ‘T’, ‘d’, ‘c’, ‘m’, ‘b’, ‘c’, ‘k’, ‘f’, ‘r’, ‘m’, ‘M’, ‘r’, ‘s’, ‘b’,

    ‘c’, ‘s’, ‘h’, ‘m’, ‘s’, ‘s’, ‘d’, ‘h’, ‘s’, ‘f’, ‘r’, ‘n’, ‘d’, ‘s’]


    Here, you create a complex filter is_consonant() and pass this function as the conditional statement for your list comprehension. Note that the thành viên value i is also passed as an argument to your function.


    You can place the conditional the end of the statement for simple filtering, but what if you want to change a thành viên value instead of filtering it out? In this case, its useful to place the conditional near the beginning of the expression:


    >>>new_list = [expression (if conditional) for member in iterable]


    With this formula, you can use conditional logic to select from multiple possible output options. For example, if you have a list of prices, then you may want to replace negative prices with 0 and leave the positive values unchanged:


    >>>>>> original_prices = [1.25, -9.45, 10.22, 3.78, -5.92, 1.16]

    >>> prices = [i if i > 0 else 0 for i in original_prices]

    >>> prices

    [1.25, 0, 10.22, 3.78, 0, 1.16]


    Here, your expression i contains a conditional statement, if i > 0 else 0. This tells Python to output the value of i if the number is positive, but to change i to 0 if the number is negative. If this seems overwhelming, then it may be helpful to view the conditional logic as its own function:


    >>>>>> def get_price(price):

    … return price if price > 0 else 0

    >>> prices = [get_price(i) for i in original_prices]

    >>> prices

    [1.25, 0, 10.22, 3.78, 0, 1.16]


    Now, your conditional statement is contained within get_price(), and you can use it as part of your list comprehension expression.


    Remove ads


    Using Set and Dictionary Comprehensions


    While the list comprehension in Python is a common tool, you can also create set and dictionary comprehensions. A set comprehension is almost exactly the same as a list comprehension in Python. The difference is that set comprehensions make sure the output contains no duplicates. You can create a set comprehension by using curly braces instead of brackets:


    >>>>>> quote = “life, uh, finds a way”

    >>> unique_vowels = i for i in quote if i in ‘aeiou’

    >>> unique_vowels

    ‘a’, ‘e’, ‘u’, ‘i’


    Your set comprehension outputs all the unique vowels it found in quote. Unlike lists, sets dont guarantee that items will be saved in any particular order. This is why the first thành viên of the set is a, even though the first vowel in quote is i.


    Dictionary comprehensions are similar, with the additional requirement of defining a key:


    >>>>>> squares = i: i * i for i in range(10)

    >>> squares

    0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81


    To create the squares dictionary, you use curly braces () as well as a key-value pair (i: i * i) in your expression.


    Using the Walrus Operator


    Python 3.8 will introduce the assignment expression, also known as the walrus operator. To understand how you can use it, consider the following example.


    Say you need to make ten requests to an API that will return temperature data. You only want to return results that are greater than 100 degrees Fahrenheit. Assume that each request will return different data. In this case, theres no way to use a list comprehension in Python to solve the problem. The formula expression for thành viên in iterable (if conditional) provides no way for the conditional to assign data to a variable that the expression can access.


    The walrus operator solves this problem. It allows you to run an expression while simultaneously assigning the output value to a variable. The following example shows how this is possible, using get_weather_data() to generate fake weather data:


    >>>>>> import random

    >>> def get_weather_data():

    … return random.randrange(90, 110)

    >>> hot_temps = [temp for _ in range(20) if (temp := get_weather_data()) >= 100]

    >>> hot_temps

    [107, 102, 109, 104, 107, 109, 108, 101, 104]


    You wont often need to use the assignment expression inside of a list comprehension in Python, but its a useful tool to have your disposal when necessary.


    When Not to Use a List Comprehension in Python


    List comprehensions are useful and can help you write elegant code thats easy to read and debug, but theyre not the right choice for all circumstances. They might make your code run more slowly or use more memory. If your code is less performant or harder to understand, then its probably better to choose an alternative.


    Watch Out for Nested Comprehensions


    Comprehensions can be nested to create combinations of lists, dictionaries, and sets within a collection. For example, say a climate laboratory is tracking the high temperature in five different cities for the first week of June. The perfect data structure for storing this data could be a Python list comprehension nested within a dictionary comprehension:


    >>>>>> cities = [‘Austin’, ‘Tacoma’, ‘Topeka’, ‘Sacramento’, ‘Charlotte’]

    >>> temps = city: [0 for _ in range(7)] for city in cities

    >>> temps


    ‘Austin’: [0, 0, 0, 0, 0, 0, 0],

    ‘Tacoma’: [0, 0, 0, 0, 0, 0, 0],

    ‘Topeka’: [0, 0, 0, 0, 0, 0, 0],

    ‘Sacramento’: [0, 0, 0, 0, 0, 0, 0],

    ‘Charlotte’: [0, 0, 0, 0, 0, 0, 0]


    You create the outer collection temps with a dictionary comprehension. The expression is a key-value pair, which contains yet another comprehension. This code will quickly generate a list of data for each city in cities.


    Nested lists are a common way to create matrices, which are often used for mathematical purposes. Take a look the code block below:


    >>>>>> matrix = [[i for i in range(5)] for _ in range(6)]

    >>> matrix

    [

    [0, 1, 2, 3, 4],

    [0, 1, 2, 3, 4],

    [0, 1, 2, 3, 4],

    [0, 1, 2, 3, 4],

    [0, 1, 2, 3, 4],

    [0, 1, 2, 3, 4]

    ]


    The outer list comprehension [… for _ in range(6)] creates six rows, while the inner list comprehension [i for i in range(5)] fills each of these rows with values.


    So far, the purpose of each nested comprehension is pretty intuitive. However, there are other situations, such as flattening nested lists, where the logic arguably makes your code more confusing. Take this example, which uses a nested list comprehension to flatten a matrix:


    >>>matrix = [

    … [0, 0, 0],

    … [1, 1, 1],

    … [2, 2, 2],

    … ]

    >>> flat = [num for row in matrix for num in row]

    >>> flat

    [0, 0, 0, 1, 1, 1, 2, 2, 2]


    The code to flatten the matrix is concise, but it may not be so intuitive to understand how it works. On the other hand, if you were to use for loops to flatten the same matrix, then your code will be much more straightforward:


    >>>>>> matrix = [

    … [0, 0, 0],

    … [1, 1, 1],

    … [2, 2, 2],

    … ]

    >>> flat = []

    >>> for row in matrix:

    … for num in row:

    … flat.append(num)



    >>> flat

    [0, 0, 0, 1, 1, 1, 2, 2, 2]


    Now you can see that the code traverses one row of the matrix a time, pulling out all the elements in that row before moving on to the next one.


    While the single-line nested list comprehension might seem more Pythonic, whats most important is to write code that your team can easily understand and modify. When you choose your approach, youll have to make a judgment call based on whether you think the comprehension helps or hurts readability.


    Remove ads


    Choose Generators for Large Datasets


    A list comprehension in Python works by loading the entire output list into memory. For small or even medium-sized lists, this is generally fine. If you want to sum the squares of the first one-thousand integers, then a list comprehension will solve this problem admirably:


    >>>>>> sum([i * i for i in range(1000)])

    332833500


    But what if you wanted to sum the squares of the first billion integers? If you tried then on your machine, then you may notice that your computer becomes non-responsive. Thats because Python is trying to create a list with one billion integers, which consumes more memory than your computer would like. Your computer may not have the resources it needs to generate an enormous list and store it in memory. If you try to do it anyway, then your machine could slow down or even crash.


    When the size of a list becomes problematic, its often helpful to use a generator instead of a list comprehension in Python. A generator doesnt create a single, large data structure in memory, but instead returns an iterable. Your code can ask for the next value from the iterable as many times as necessary or until youve reached the end of your sequence, while only storing a single value a time.


    If you were to sum the first billion squares with a generator, then your program will likely run for a while, but it shouldnt cause your computer to freeze. The example below uses a generator:


    >>>>>> sum(i * i for i in range(1000000000))

    333333332833333333500000000


    You can tell this is a generator because the expression isnt surrounded by brackets or curly braces. Optionally, generators can be surrounded by parentheses.


    The example above still requires a lot of work, but it performs the operations lazily. Because of lazy evaluation, values are only calculated when theyre explicitly requested. After the generator yields a value (for example, 567 * 567), it can add that value to the running sum, then discard that value and generate the next value (568 * 568). When the sum function requests the next value, the cycle starts over. This process keeps the memory footprint small.


    map() also operates lazily, meaning memory wont be an issue if you choose to use it in this case:


    >>>>>> sum(map(lambda i: i*i, range(1000000000)))

    333333332833333333500000000


    Its up to you whether you prefer the generator expression or map().


    Profile to Optimize Performance


    So, which approach is faster? Should you use list comprehensions or one of their alternatives? Rather than adhere to a single rule thats true in all cases, its more useful to ask yourself whether or not performance matters in your specific circumstance. If not, then its usually best to choose whatever approach leads to the cleanest code!


    If youre in a scenario where performance is important, then its typically best to profile different approaches and listen to the data. timeit is a useful library for timing how long it takes chunks of code to run. You can use timeit to compare the runtime of map(), for loops, and list comprehensions:


    >>>>>> import random

    >>> import timeit

    >>> TAX_RATE = .08

    >>> txns = [random.randrange(100) for _ in range(100000)]

    >>> def get_price(txn):

    … return txn * (1 + TAX_RATE)



    >>> def get_prices_with_map():

    … return list(map(get_price, txns))



    >>> def get_prices_with_comprehension():

    … return [get_price(txn) for txn in txns]



    >>> def get_prices_with_loop():

    … prices = []

    … for txn in txns:

    … prices.append(get_price(txn))

    … return prices



    >>> timeit.timeit(get_prices_with_map, number=100)

    2.0554370979998566

    >>> timeit.timeit(get_prices_with_comprehension, number=100)

    2.3982384680002724

    >>> timeit.timeit(get_prices_with_loop, number=100)

    3.0531821520007725


    Here, you define three methods that each use a different approach for creating a list. Then, you tell timeit to run each of those functions 100 times each. timeit returns the total time it took to run those 100 executions.


    As the code demonstrates, the biggest difference is between the loop-based approach and map(), with the loop taking 50% longer to execute. Whether or not this matters depends on the needs of your application.


    Conclusion


    In this tutorial, you learned how to use a list comprehension in Python to accomplish complex tasks without making your code overly complicated.


    Now you can:


    • Simplify loops and map() calls with declarative list comprehensions

    • Supercharge your comprehensions with conditional logic

    • Create set and dictionary comprehensions

    • Determine when code clarity or performance dictates an alternative approach

    Whenever you have to choose a list creation method, try multiple implementations and consider whats easiest to read and understand in your specific scenario. If performance is important, then you can use profiling tools to give you actionable data instead of relying on hunches or guesses about what works the best.


    Remember that while Python list comprehensions get a lot of attention, your intuition and ability to use data when it counts will help you write clean code that serves the task hand. This, ultimately, is the key to making your code Pythonic!


    Mark as Completed


    Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Understanding Python List Comprehensions


    Python Tricks


    Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.


    Python Tricks Dictionary Merge Send Me Python Tricks »


    About James Timmins


    James TimminsJames Timmins


    James is a software consultant and Python developer. When he’s not writing Python, he’s usually writing about it in blog or book form.


    » More about James


    Each tutorial Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:


    Aldren Santos


    Aldren


    Geir Arne Hjelle


    Geir Arne


    Jaya Zhané


    Jaya


    Joanna Jablonski


    Joanna


    Mike Driscoll


    Mike


    Master Real-World Python Skills With Unlimited Access to RealPython



    Join us and get access to hundreds of tutorials, hands-on video courses, and a community of expertPythonistas:


    Level Up Your Python Skills »


    Master Real-World Python Skills
    With Unlimited Access to RealPython



    Join us and get access to hundreds of tutorials, hands-on video courses, and a community of expert Pythonistas:


    Level Up Your Python Skills »


    What Do You Think?


    Tweet Share E-Mail


    Real Python Comment Policy: The most useful comments are those written with the goal of learning from or helping out other readersafter reading the whole article and all the earlier comments. Complaints and insults generally wont make the cut here.


    Whats your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.


    Keep Learning


    Related Tutorial Categories: basics python


    Recommended Video Course: Understanding Python List Comprehensions


    Keep reading RealPython by creating a không lấy phí account or signingin:


    Keep reading


    Continue »


    Already have an account? Sign-In


    Reply

    4

    0

    Chia sẻ


    Chia Sẻ Link Tải List comprehension pandas if-else miễn phí


    Bạn vừa đọc nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Review List comprehension pandas if-else tiên tiến và phát triển nhất Share Link Down List comprehension pandas if-else Free.



    Thảo Luận vướng mắc về List comprehension pandas if-else


    Nếu sau khi đọc nội dung bài viết List comprehension pandas if-else vẫn chưa hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Admin lý giải và hướng dẫn lại nha

    #List #comprehension #pandas #ifelse

Related posts:

Post a Comment

Previous Post Next Post

Discuss

×Close