Mẹo về How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Chi Tiết
Bạn đang tìm kiếm từ khóa How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? được Cập Nhật vào lúc : 2022-09-19 18:40:23 . Với phương châm chia sẻ Bí quyết Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi Read nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.
In mathematics, permutation is known as the process of arranging a set in which all the members of a set are arranged into some series or order. The process of permuting is known as the rearranging of its components if the set is already arranged. Permutations take place, in more or less important ways, in almost every area of mathematics. They frequently appear when different commands on certain finite sets are considered.
Nội dung chính
- How many six-letter words can one generate with the letters of the word CANADA?
- Similar Questions
- How many 4 letter word can be formed from the given word daughter such that every word must contain the letter G?
- How many different words can be formed from the letter of the word daughter?
- How many 4 letter words containing G can be formed using letters of daughter repetition not allowed?
- How many 4 letter words can be formed from the letters of the word answer?
Permutation Formula
In permutation
r things are selected from a set of n things without any replacement. In this order of selection matter.
nPr = (n!)/(n – r)!
where
n = set size, the total number of items in the set
r = subset size, the number of items to be selected from the set
Combination
A combination is an act of choosing items from a group, such that (not like permutation) the order of choice does not
matter. In smaller cases, it is possible to count the number of combinations. Combination refers to the union of n things taken k a time without repetition In combination you can select the items in any order. To those combinations in which re-occurrence is allowed, the terms k-selection or k-combination with replication are frequently used.
Combination Formula
In combination r things are selected from a set of n things and where the order of selection does
not matter
nCr = n!⁄((n-r)! r!)
Here,
n = Number of items in set
r = Number of items selected from the set
How many six-letter words can one generate with the letters of the word CANADA?
Solution:
Case 1: Where one A can’t be right before or after another A (like AA or AAA)
There are six positions, numbered 1 through 6, to be
assigned to the six letters.
The positions assigned to the 3 A’s may be (1,3,5) i.e., A*A*A, (1,3,6) i.e., A*A**A,
(1,4,6) i.e., A**A*A or (2,4,6) i.e., *A*A*A the asterisks must be substituted with
letters C, N, D in order to abide by the rules. So there are only 4 ways to assign
positions to the 3 A’s.
The remaining 3 letters are distinct, so they can be placed in 3! = 6 different ways.
Therefore, the number of words you can make using 6 letters from
“CANADA” only once
where one A can’t be right before or after another A (like AA or AAA) is
4*6 = 24.
Case 2: Where one A can be right before or after another A (like AA or AAA)
The word ‘CANADA’ contains 3 A’s, 1 C, 1 N, and 1 D.
Number of permutations of the letters of the given word = 6!/3! = 120.
Similar Questions
Question 1: How many five-letter words can one generate with the letters of the
word India?
Solution:
Case 1:- where one I can’t be right before or after another I (like II)
There are five positions, numbered 1 through 5, to be assigned to the five letters.
The positions assigned to the 2 I’s may be (1,3) i.e., I*I**, (3,5) i.e., **I*I or
(2,4,) i.e., *I*I* the asterisks must be substituted with letters N,D,A in order to
abide by the rules. So there are only 3 ways to assign positions
to the 2 I’s.
The remaining 3 letters are distinct, so they can be placed in 3! = 6 different ways.
Therefore, the number of words you can make using 5 letters from “INDIA” only once
where one I can’t be right before or after another I (like II) is
3*6 = 18.
Case 2 :- where one I can be right before or after another I (like II)
There are 60 different ways to arrange the 5 letters in “INDIA”.
Explanation:
The word ‘INDIA’ contains 2
I’s, 1 A, 1 N and 1 D.
Number of permutations of the letters of the given word =5!⁄2!=60.
Question 2: How many Seven-letter words can one generate with the letters of the word America?
Solution:
Case 1:- where one A can’t be right before or after another A (like AA)
There are Seven positions, numbered 1 through 7, to be assigned to the seven letters.
The positions assigned to the 2 A’s
may be (1,3) i.e., A*A**, (3,5) i.e., **A*A,
(2,4,) i.e., *I*I* (4,6) i.e., ***A*A* (5,7) i.e., ****A*A the asterisks must be
substituted with letters M,E,R,I,C in order to abide by the rules. So there are only
5 ways to assign positions to the 2 A’s.
The remaining 5 letters are distinct, so they can be placed in 5! = 120different ways.
Therefore, the number of words you can make using 7 letters from “AMERICA” only once
where one A can’t be right before or
after another A (like AA) is
5×120 = 600.
Case 2 :- where one A can be right before or after another A (like AA)
There are 2520 different ways to arrange the 7 letters in “AMERICA”.
Explanation:
The word ‘AMERICA’ contains 2 A’s, 1 M, 1 E, 1R, 1I and 1C.
Number of permutations of the letters of the given word =7!⁄2!=2520.
How many 4 letter word can be formed from the given word daughter such that every word must contain the letter G?
3! Therefore, there are 840 words possible with the given condition.
How many different words can be formed from the letter of the word daughter?
The number of words formed from ‘DAUGHTER’ such that all vowels are together is 4320.
How many 4 letter words containing G can be formed using letters of daughter repetition not allowed?
Hence the total no. of ways (words) of four letters each of which necessarily contain the letter G = 4* 210 = 840 .
How many 4 letter words can be formed from the letters of the word answer?
Hence, 360 ways of 4 letter words can be formed from the letters of the word ‘ANSWER’ and 120 ways of 4 letter words start with vowels.
Tải thêm tài liệu liên quan đến nội dung bài viết How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G?
Reply
3
0
Chia sẻ
Share Link Down How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? miễn phí
Bạn vừa Read nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Video How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? tiên tiến và phát triển nhất và Share Link Cập nhật How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? miễn phí.
Giải đáp vướng mắc về How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G?
Nếu sau khi đọc nội dung bài viết How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? vẫn chưa hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Tác giả lý giải và hướng dẫn lại nha
#letter #words #formed #letter #word #daughter #word #letter